ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages
|
This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles. For more information about the manual page format, see the manual page for manpages(5). |
CSQRT(3) BSD Library Functions Manual CSQRT(3) NAME csqrt -- complex square root function SYNOPSIS #include <complex.h> double complex csqrt(double complex z); long double complex csqrtl(long double complex z); float complex csqrtf(float complex z); DESCRIPTION csqrt(z) computes the square root of the complex floating-point number z, with a branch cut on the negative real axis. The result is in the right half-plane, including the imaginary axis. For all complex z, csqrt(conj(z)) = conj(csqrt(z)). SPECIAL VALUES The conjugate symmetry of csqrt() is used to abbreviate the specification of special values. csqrt(+-0 + 0i) returns +0 + 0i. csqrt(x + inf i) returns inf + inf i for all x (including NaN). csqrt(x + NaN i) returns NaN + NaN i. csqrt(-inf + yi) returns 0 + inf i for any positively-signed finite y. csqrt(inf + yi) returns inf + 0i for any positively-signed finite y. csqrt(-inf + NaN i) returns NaN + inf i. csqrt(inf + NaN i) returns inf + NaN i. csqrt(NaN + yi) returns NaN + NaN i. csqrt(NaN + NaN i) returns NaN + NaN i. NOTES If z is in the upper half-plane, then csqrt(z) is in the upper-right quadrant of the complex plane. If z is in the lower half-plane, then csqrt(z) is in the lower-right quadrant of the complex plane. SEE ALSO complex(3) STANDARDS The csqrt() function conforms to ISO/IEC 9899:1999(E). 4th Berkeley Distribution October 10, 2006 4th Berkeley Distribution |