Documentation Archive Developer
Search
ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

For more information about the manual page format, see the manual page for manpages(5).



CCOSH(3)                 BSD Library Functions Manual                 CCOSH(3)

NAME
     ccosh -- complex hyperbolic cosine function

SYNOPSIS
     double complex
     ccosh(double complex z);

     long double complex
     ccoshl(long double complex z);

     float complex
     ccoshf(float complex z);

DESCRIPTION
     ccos(z) computes the hyperbolic cosine of the complex floating-point num-ber number
     ber z.

     For all complex floating point numbers z,

           ccosh(conj(z)) = conj(ccosh(z)),
           ccosh(-z) = ccosh(z).

SPECIAL VALUES
     The symmetries of ccosh() are used to abbreviate the specification of
     special values.

     ccosh(0 + 0i) returns 1 + 0i.

     ccosh(0 + inf i) returns NaN + 0i, and raises the invalid flag.

     ccosh(0 + NaN i) returns NaN + 0i.

     ccosh(x + inf i) returns NaN + NaN i, and raises the invalid flag, for
     finite nonzero x.

     ccosh(x + NaN i) returns NaN + NaN i, for finite nonzero x.

     ccosh(inf + 0i) returns inf + 0i.

     ccosh(inf + yi) returns inf * cis(y), for finite positive y, where cis(y)
     = cos(y) + i*sin(y).

     ccosh(inf + inf i) returns inf + NaN i, and raises the invalid flag.

     ccosh(inf + NaN i) returns inf + NaN i.

     ccosh(NaN + 0i) returns NaN + 0i.

     ccosh(NaN + yi) returns NaN + NaN i, for nonzero numbers y.

     ccosh(NaN + NaN i) returns NaN + NaN i.

NOTES
SEE ALSO
     ccos(3) complex(3)

STANDARDS
     The ccosh() function conforms to ISO/IEC 9899:1999(E).

4th Berkeley Distribution      November 9, 2006      4th Berkeley Distribution